A wrapper for affirm_true().
The columns argument is used to construct the
affirm_true(condition = dplyr::select(., all_of(columns)) |> duplicated()) argument.
Usage
affirm_no_dupes(
data,
label,
columns,
id = NA_integer_,
priority = NA_integer_,
data_frames = NA_character_,
report_listing = NULL,
data_action = NULL,
error = getOption("affirm.error", default = FALSE)
)Arguments
- data
a data frame
- label
a string used to describe the affirmation
- columns
columns to check duplicates among
- id, priority, data_frames
Optional additional information that will be passed to affirmation report.
idmust be an integer, e.g.id = 1Lprioritymust be an integer, e.g.priority = 1Ldata_framesstring of data frame names used in affirmation, e.g.data_frames = "RAND, DM"
- report_listing
an expression selecting/filtering rows from
data=to return in the issue listing report. The default is to return the result fromcreate_report_listing(), which are the rows that do not met incondition=and columns included in thecondition=expression along with any columns set inoption('affirm.id_cols'). The'affirm.id_cols'option must be a character vector of column names, where columns will be selected withdplyr::select(any_of(getOption('affirm.id_cols'))).- data_action
this expression is executed at the end of the function call when supplied.
Default is NULL, and the passed data frame in
data=is returned unaltered.Perhaps you'll need to remove problematic rows:
data_action = dplyr::filter(., !(!!condition))
- error
Logical indicating whether to throw an error when condition is not met. Default is
FALSE.
See also
Other Data Affirmations:
affirm_false(),
affirm_na(),
affirm_range(),
affirm_true(),
affirm_values()
Examples
affirm_init(replace = TRUE)
#> ✔ We're ready to make data affirmations...
dplyr::as_tibble(mtcars) |>
affirm_no_dupes(
label = "No duplicates in the number of cylinders",
columns = cyl
)
#> • No duplicates in the number of cylinders
#> 29 issues identified.
#> # A tibble: 32 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows
affirm_close()
